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AN ANALYTIC METHOD FOR COMPUTING THE STATE TRANSITION

MATRIX WHICH INCLUDES THE FIRST-ORDER SECULAR

PERTURBATIONS OF PLANET OBLATENESS

By James C. Kirkpatrick

SUMMARY

A method is presented for the analytic computation of the state

transition matrix which has the capability of including the first-

order secular perturbations of planet oblateness. The method uses

the orbital elements in the computations and is formulated solely for

elliptic trajectories. The method is not restricted to perturbed or

unperturbed trajectories and is not limited in the magnitude of the

desired time interval. In addition, the method has the capability of
accepting any desired perturbation model provided that analytical

derivatives may be obtained.

INTRODUCTION

The state transition matrix is an essential part of space-flight

trajectory analysis. In guidance and navigation work it is used to

propagate a set of small initial perturbation errors on a reference

trajectory to determine their magnitude at some future time. In

trajectory optimization work employing primer vector theory, it is

used to compute the components of the primer vector and its derivative

over the trajectory in question (refs. 1 and 2).

This paper presents a method for computing the state transition

matrix which has the capability of including the first-order secular

perturbations of planet oblateness. For this purpose, the method

performs an initial transformation from Cartesian coordinates to

orbital elements and performs all necessary partial derivative computa-
tions in terms of orbital elements. The transition matrix in terms of

Cartesian coordinates is then formed as the product of three separate
matrices.



The formulation employedin the analytical formulation is solely
for elliptic trajectory analysis. However,the methodis not limited
to perturbed or unperturbed orbit computationsand is not restricted in
the magnitudeof the propagation time interval. The approachto the
solution lends itself to include short and long period perturbations as
well as second-order and third-body effects.

The analytic formulation was initially developedto produce a
supplementarymatrix which could be addedto the transition matrix
producedby the programPERTRB(ref. h) to provide the capability
of including the first-order secular perturbations of planet oblateness.
As a result, a formulation wasdevelopedwhich would permit the parti-
tioning of the resultant matrix into its unperturbed and perturbation
cc_ponents. After the solution of the problemwascompleted, it was found
that the programPERTRBis limited for elliptic trajectories to time
intervals of less than or equal to one period of the orbit. As a
result, th, initial formulation (which possessedinherent inaccuracies
due to the choice of the time of periapsis passageas one of the
independent variables) wasmodified to include the meananomalyas an
independent variable to increase accuracy.

The author gratefully acknowledgesthe contributions of George
H. Born and ClaudeE. Hildebrand, Jr. to the formulation of the
problem and of Ellis W. Henrywhoprovided a numberof computer
programsused in the evaluation of the results as well as all the test
casesused in this study.

ANALYSIS

Definition and Properties of the
State Transition Matrix

It is shownin reference 3 that first-order perturbations in
position (6_) and velocity (6V) at time t are related to first-order
perturbations 6_0 and 6V0 at an initial time t Oby the following
equation

: @(t,to) (1)



.B

where $(t,t O) is the 6 x 6 transition matrix defined as

ddt [¢(t'to)] = F(t)¢(t'to)

subject to the conditions

(2)

(Io)$(t0,t 0) = ¢(t,t) =
0 I

(3)

where I is a 3 x 3 identity matrix and 0 is a 3 x 3 null matrix. The

quantity F(t) is defined by the relation

(t) 0

where G(t) is the gravity gradient matrix defined as

(2)

(5)

where g is the gravitational acceleration vector and _ is the position

ve ctor.

If the equations of motion of a particle considered as a point mass

can be derived from a time invariant potential, then the force field

may be classified as conservative and the gravity gradient matrix is

always symmetric. This means that if U is a time invariant potential

function, then

r = VU = g (6)



2U _ 2U _ 2U

_x_---f_x_z

_2 U _2 U _2 u

_y_x _7 _y_z

_2U B2U _2 U

_z_x _z_y
m

(7)

Battin (re£ 3) derives the gravity gradient matrix for an inverse

square force of attraction. It will be shown that the gravity gradient

matrix is symmetric when derived from a potential function which

includes the second harmonic of the gravitational potential

u= l+J_rl \3-

where J is the coefficient of the second harmonic of the potential

function, R is the equatorial radius of the attracting body, r is the

magnitude of the radial distance from the center of the attracting body

to the particle in orbit, _ is the gravitational parameter of the attracting

body, and ¢ is the latitude of the particle in orbit measured from the

center of the coordinate system fixed at the center of the attracting

body. The gravity gradient matrix can be formed by direct differentia-

tion of equation(8) after replacing sin _ by z/r.

_U

_x IxI-x3-I
_U = _y3 yx 2 + 4yz 2)3y U r_ + jR2 r7 (9)

[ z_ r--#+ jR 2 (-3x2z - 3y2z +2zS)]r?
_U

_z



The second-order partials follow directly from differentiation of the
first-order partials of equation (9)

_x_---'F"=_x ° _L r_
_2U 82U [2xz

=3z --x= Lr5

_2U 82U [_f__y_----_=_z_y = u r5

+ JR2 ( 5x3y + 5x_3-r- 30x_z2)]

+ JR 2 < 15x3z + rgl5xy2z - 20xz2)]

+ JR 2 (15x2y z +r_15_5z - 20yz31

(10)

Comparison of the results of equation (i0) with the definition of the

gravity gradient matrix given by equation (7) shows that the gravity

gradient matrix is symmetric.

The importance of the symmetric property of the gravity gradient

matrix lies in establishing the symplectic property of the state

transition matrix. A symplectic matrix is any even dimensional matrix

$ which satisfies the condition

CTA¢ = A (ii)

where

(:i)A = (12)
- 0

For any matrix $ which satisfies equation (ii), the first derivative

with respect to time of equation (ll) gives

/ \d
IcTA¢| = 0
, J

d [ ,t0)TA_ (t ]or _ $(t ,t O) = 0 (13)



if ¢ is the state transition matrix ¢(t,t0). Expanding the left hand

side of equation (13) and introducing the results of equation (2) gives

d__ [¢(t,t0)TA¢ (t,t0)]dt = 0 = ¢(t,t0)TF(t)TA¢(t,t O) + ¢(t,t0)AF(t)¢(t,t0)

¢(t,to)T [-G(_)T iI [G(t) i]
= ¢(t,to) + ¢(t,t O) ¢(t,t O)

0 - (14)

Equation (14) can hold only if G(t) = G(t) T whimh is always always true if G(t)

is derived from a time invariant potential function such as given by

equation (8).

The symplectic property of a state transition matrix is of

primary importance in taking its inverse analytically (ref. 3).

However, a transition matrix which takes into account only the first-order

secular effects oT the second harmonic term will not necessarily be

symplectic. The reason for this is that the equations of motion which

would be required to describe the motion of a particle moving under

the effects of a gravitational force which produces only secular

effects could not be integrated to produce the same form of the potential

given by equation (8). This point was verified in the results of this

analysis.

3
In this study the J term of equation (8) was replaced by _ J20

3
or simply _ J2 as only zonal harmonics were considered.

Analytical Computation of the State Transition Matrix

The state transition matrix is computed analytically as the product

of three 6 × 6 matrices in the following manner:

_3Si(t) ) l_Si(t)_ l_ei(t) _ _3Ei(tol ) <t't°l:\ sjlt0) V jlt01!Vsjlt0
(15)



where i, J = i, 2, ..., 6. These matrices may be defined as follows:

_Si(t)
§Sj (t0) /

a

_x(t) _x(t) _x(t)

_ _z(t 0 )

• • • • , • • • • • • , , • • • • • • •

• • • • • • • • • • • • • • • • • • • •

_z(t) _z(t)

............ 3Z(to) -

(]-6)

"_(___.L _x(t) _x(t)
Ba(t) _ ......

• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

• • , • • • • • • • • • • • • • • • • •

Bz(t) _z(t)

(]-7)



aEi(t)_j (to)/ =

(_ Ei(t 0 )

_Sj (to)l =

_a(t) a_(t)

_e(t)

_-_0 ) ...............

• • , ° • ° ° ° ° ° ° ° ° ° ° ° ° , ° °

_._4(t) 3M(t )

_a(t O) 3a(t O) _a(t O)

....... I

_e(t 0 )

. • • ° • • ° • • • , • • • • •

°o°,,t_,,,°°,,°,,,, •

I,,,°°°°°°,°,,°°°°,,

• * • • ° ° • ° , ° ° ° ° ° ° ° ° ° ° °

aM(to)- _M(t O)

__X_o) ............ _(to)"

(]_8)

(19)



In the above expressions, Si(t 0) and Si(t) represent the components of

the initial and final state vectors referred to the inertial coordinate

system. As i increases from 1 to 6, S takes on the representation of

x, y, z, 5, @, and £, respectively. In the same manner, zi(t 0) and

Ej(t) represent any one of the orbital elements at the initial and final

times. As J increases from 1 to 6, _ takes on the representation of

a, e, i, fl, _, and M (or t if desired). These symbols represent,
P

respectively, the semimaJor axis, eccentricity, inclination, longitude

of the ascending node, argument of periapsis, and mean anomaly (t is

the time of periapsis passage). P

Referring to figure i, if _i' ml' nl' and _2' m2' n2 are the

direction cosines of S_ and Sn with respect to axes Sx, S , and S ,y z
then

x = £I _ + £2n

y = ml_ + m2n

z = nl_ + nln

= +

= +

= +

From triangles ATN, ABN, and AKN (see fig. l)

£i = cos(AT) = cos fi cos _ - sin _ sin _ cos i

mI = cos(AB) = sin Q cos _ + cos _ sin w cos i

nI = cos(AK) = sin _ sin i

(20)

(2l)

From triangles DTN, DBN, DKN

£2 = cos(DT) = -cos fl sin _ - sin flcos _ cos i

m 2 = cos(DB) = -sin fl sin _ + cos _ cos _ cos i

n2 = cos(DK) = cos w sin i (22)
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Hence, for elliptic orbital motion, the elements of a state vector can

be expressed in terms of the orbital elements with the aid of the

following transformations.

= r cos f = a(cos E - e)

n = r sin f = aW_----_ "/ sin E

= -r sin f f = -a sin E E = - sin E

. (ra_)n = r cos f f = aW_--_ -Z cos E E = U cos E

(23)

where r, f, E, and u are, respectively, the magnitude of the radius

vector, true anomaly, eccentric anomaly, and the gravitational parameter

of the attracting body. Replacing equations (23) in equation (20) yields,

after some simplification

x = a [(cos E - e) Z1 + _ sin E £2]

y = a [<cos E - e) m I + _ sin E m2]

z = a [(cos E - e) nI + _ sin E n2]

x = (i - e cos E)

[w_---_e-T cos E m 2 - sin F, mll

"I

(i - e cos E) J

[__c°s E n2 - sin E nl]
(i - e cos E)

(2_-)
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The partial derivatives of equations (2h) with respect to the orbital

elements are given in appendix A. They are used to evaluate the

matrices given by equations (17) and (19). The matrix Riven by equation (19)

is formed by numerical inversion of the matrix given by equation (17)

evaluated at the initial time, tO .

In order to effect the transformation from eccentric anomaly to

mean anomaly, it is necessary to consider E to be a function of M and

e. If the time of periapsis passage t is to be considered one of the
P

independent variables, it is necessary to consider M as a function of

aandt
p'

To evaluate the matrix given by equation (18), it is necessary to

integrate Lagrange's planetary equations (given in appendix B) with a

disturbing function which includes only secular terms. This can be

3
done by replacing the term J in equation (8) by _ J and r and sin ¢
by the equations (see refs. 5 and 6).

a(l - e2)
r =

1 + e cos f

sin _ = sin i sin (f + _)

(25)

The disturbing function F becomes

3 1 1
F = u _ _ _ sin2i + _ sin2i cos 2(f + _)

(26)

where F = U - _ • Differentiation of equation (26) with respect to a, e,
r

i, _, _ , and M allows for direct integration of the Lagrange planetary

equations. The transformation of the _rue anomaly f to mean anomaly

M (which is a linear function of time in unperturbed motion) is accom-

plished by the equation

_f (_.)2 )i/23,_- (i - e2 (27)

This relationship is derived in appendix C. By this transformation the

quantities (a/r) and f in the disturbing function F become functions of

e and M only and are periodic with respect to M. Therefore, the terms

in F which depend neither on M nor on _ are secular; terms depending on

but not on M are long-period, while those depending solely on M are

short-period. Only those terms causing secular variations of the
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orbital elements are considered here. In order to sort out such terms,
use is madeof the fact that short-period perturbations result from the
variations of Mwhile the long-period perturbations arise from the
secular variations of ,,,. As a result, it is possible to take the mean
value of the disturbing function F with respect to M to obtain the
long-period perturbations. To obtain the secular perturbations, it is
possible to averagewith respect to M those parts of the disturbing
function dependingneither on M nor _.

Examination of equation (26) showsthat it gives rise to a secular and
a periodic variation. The secular contributions arise from the terms

F1 = _ _ _ - _ sin2i (28)

where F] represents only the first-order J2 part of the disturbing func-
tion. Since the main interest of this paper lies with the nonperiodic
variation of the elementsundergoing perturbations, equation (28) maybe
averagedover a given revolution. To do this, it is necessaryto find
the averageof (_/r) 3 as

2_

o

substituting equation (27) gives

2_

- 01(a) 3 1 (a 13(r Y df= _ \7_ \;/

substituting the first of equations (25)

2w

df

(1 - e2) 3"2
0

2_ 2Tr

1 / -3/2 i / e cos f
= 2--_ (i - e2) df + _ (i - e2) 312 df

0 0

= _ e e2 )-3/ 12z
12_ (i - e2)-3/2(2_r - O) * _ (i - 2(-si n f)

= (! - e2)-3/2 0

(29)



Substituting equation (29) in equation (28) gives

3 J2 R2

F 1 = u 2 a3

1

(i- e2)-3/2(3- _ sin 2i) (30)

Equation (30) is used in the integration of the Lagrange planetary

equations to give rise to the variations in the orbital elements given

below

a=a 0

e = e 0

i = i
0

J2R 23
n = _0 2 pT- V_T (t - to)

3 " J2 R2:o0

M = M 0 + U 1 + 3_ - _ sin 2 (t - t o )

p = a(l - e 2 )

3i)

The partial derivatives of equation (31) with respect to the orbital

elements required to form the matrix given by equation _18) is given in

appendix D. If the time of periapsis passage is chosen as the sixth

independent variable, the equation for M in equations (31) is replaced by

3J2R2 ( 3 )tp = tpo - _-7- i - _ sin2i _ (t - t O )
(32)

as derived in appendix B.
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In accordance with the recommendations of reference 5, the

expressions for _ and _ given in equation (31) were modified to read

3 J2R2

: _0 - _-7"- _ cos i (t - to)

\ (33)

3 J2R2(__7__ 5: )= _0 + _ 2 sin2i (t tO )

where

-_ 2 --_- 1 - _ sin2i (3_)

THE PROGRAM

The equations for computing the state transition matrix by the

analytic method have been programed in double precision using the

Fortran V language for the UNIVAC ll08 digital computer. The entire

package may be obtained by calling the subroutine STD. Subroutine STD

is the driving or control subprogram for the entire package.

The subroutine STD converts the initial state vector and time to

nondimensional units and calls the necessary subroutine subprograms

which compute the state transition matrix. At the completion of the

computations, the elements of the state transition matrix are converted

to the units of the state vector in the calling argument list.

STD calls four additional subroutines: STATE, SECULR, MATIN,

and MLTMAT. Subroutine STATE calls two additional subprograms; the

function DDA and the subroutine MODEL. These subprograms together with

the driving subprogram STD may be considered a black box. However, these
subprograms perform the following operations.

After converting the initial state vector and time to nondimensional

units, STD calls STATE twice in succession. On its initial call, STATE

converts the now normalized input state vector to orbital elements and

proceeds to compute the matrix given by equation (17) evaluated at the

initial time. This matrix is returned to STD and is later inverted by

a call to the subroutine MATIN to form the matrix given by equation (19).
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On the second call to STATE, the orbital elements are corrected to

their value at the end of the time interval in accordance with the

equations of the model for the problem. These corrections are brought

about by a call from STATE to subroutine MODEL, which contains the

equations of the model. After the corrections from MODEL have been

returned, a call to the function DDA from STATE corrects mean anomaly

at the final time to the eccentric anomaly by a Newton-Raphson iteration

on Kepler's equation. With the orbital elements corrected to their

values at the final time, STATE proceeds with the computation of the

matrix given by equation (17) evaluated at the final time. Thls matrix

is returned to STD which in turn calls SECULR.

Subroutine SECULR comoutes the matrix given by equation (18). This

matrix is returned to STD where it is premultiplied by the matrix given

by equation (17) on the first of two successive calls to subroutine M-LTMAT.

The product of these matrices is oostmultiplied by the matrix given by

equation (19). This operation is performed on the second call to MLTMAT.

The product of these three matrices is the state transition matrix.

The elements of the state transition matrix as returned by MLTMAT are

converted from nondimensional units to the units of the input state

vector and returned as the state transition matrix to the calling program.

A flow diagram of the program for computing the state transition

matrix by the analytic method is given in figure 2. The calling state-

ment for the subroutine is: CALL STD (XMU,RO,XJ2,T,Ro,_o,TK,RK,VK,PHI).

The arguments in the list are, respectively, the gravitational parameter,

equatorial radius, and the coefficient for the second harmonic of the poten-

tial function for the attracting body, the time increment, the position

and velocity vectors (each an array of 3 x 1 column vectors), conversion

factors to convert the units of the time and the Cartesian coordinates

Of the position and velocity vectors to the same units of the gravitational

parameter and equatorial radius of the attracting body, and the 6 x 6

array which contains the state transition matrix in the same units as the

position and velocity vectors. Only the gravitational parameter and

equatorial radius must be supplied in a consistent system of units.

The tlme required to compute the state transition matrix by the

analytic method is approximately 25 milliseconds.

CONCLUSIONS

The state transition matrix can be computed analytically for any

specific model desired. The formulation considered in this paper was

prepared specifically for elliptic orbit trajectories, and has the

capability of extending through any desired number of revolutions.



I MAIN

Ro,Vo, TK, RK, VK
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Ro'Vo' To' P"J2('_5 • [ STATE I
a e I,_(_,= Eo,o.oo o,o,_.oJ
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I -- . I MATIN
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(_ k(_o)i: I
I MLTMAT(os'_ (_, '_

k _'f ),\ _"fo)

a, A _o/,k

Figure 2, - Flow chart lOf analytic computation ol State transition matrix,
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However, any desired type of trajectory can also be considered in the

same manner. In addition, any specific perturbation model can also be

included. For this paper, a model which considered only the first-order

secular perturbations was included. The method has speed and accuracy

within the bounds of the specific model considered. This fact was

verified by comparison of the results obtained by the analytic method

with the results of a numerical technique described in reference 7.
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APPENDIX A

COMPUTATION OF PARTIAL DERIVATIVES OF THE CARTESIAN

COORDINATES WITH RESPECT TO THE ORBITAL ELEMENTS
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APPENDIX A

COMPUTATION OF PARTIAL DERIVATIVES OF THE CARTESIAN

COORDINATES WITH RESPECT TO THE ORBITAL ELEMENTS

In order to write the parital derivatives of the Cartesian

coordinates with respect to the orbital elements, it is convenient

to first differentiate the direction cosines.

£1 = cos G cos w - sin _ sin _ cos i

(_£i/_i) = sin _ sin _ sin i

(_£i/8_) = -sin _ cos w - cos _ sin _ cos i

(_£i/8w) = -cos _ sin w - sin _ cos w cos i

m I = sin _ cos _ + cos _ sin w cos i

(_ml/_i) = -cos _ sin _ sin i

(_ml/8_) = cos _ cos _ - sin _ sin _ cos i

(_ml/_W) = -sin _ sin w + cos _ cos _ cos i

nI = sin w sin i

(Snl/_i) = sin w cos i

(Snl/_) = 0

(_nl/SW) = cos e sin i

£2 = -cos _ sin _ - sin _ cos _ cos i

(_£2/_i) = sin _ cos _ sin i

Precedingpageblank



9.2

(_£2/_) = sin _ sin _ - cos _ cos _ cos i

(_£2/_w) = -cos _ cos w + sin _ sin m cos i

m 2 = -sin _ sin w + cos _ cos _ cos i

(3m2/8i) = -cos _ cos _ sin i

(_m2/3_) = -cos _ sin w - sin _ cos _ cos i

(3m2/_) = -sin _ cos _ - cos _ sin _ cos i

n 2 = cos _ sin i

(_n2/_i) = cos _ cos i

(_n2/_) = 0

(_n2/_) = -sin w sin i

The partial derivatives of the Cartesian coordinates with respect

to the orbital elements can now be written. However, before this can

be done it is necessary to first specify the six independent variables of

the transformation.

If S = Si(a, e, i, _, _, E) and E = E(M, e), then S = Si(a, e, i,

_, m, M) and (_S/_a) = (_Si/_a), where i = i, 2, ..., 6, then

(_Sl_e) = (ssilSe) + (_SIE)(_E/_e)

(_Sl_i) = (_Sil_i)

(_sl_) = (_sil_n)

(_sl_) = (_SilS_)

(_S/SM) = (_S./_E)(_E/_M)
1
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If E = E(M, e) and M = M(a, tp) then E = E[M(a, tp), e] and

S = S.(a, e, i, 2, _, t ) and
i p

(_s/_a) = (asi/_a)+ (aSi/_E)(_EI_M)(_M/_a)

(_S/Se) = (SSi/Se)+ (_Si/_E)(_EI_e)

(_S/_i)= (BSi/_i)

(_s/_) = (_s./_)
1

(asian) = (aSi/_m)

(SSltp) = (SSiI_E)(_EI_M)(_MI_t p)

The additional partial derivatives needed are given as follows:

M = _ (t - tp) = E - e sin E

(_M/Da) = _ _a _ (t- tp)

(8Ml_e) = (DE/De) - sin E - e cos E(_EI3e)

but (_M/De) = 0, therefore

(SElSe) = sin EI(I - e cos E)

(3M/_E) = 1 - e cos E

(_EI_M) = i/(i - e cos E)

The partial derivatives of the Cartesian coordinate with respect to the
orbital elements become (for S = S.(a, e, i, _, m, t )

i p

x = a[(eos E - e) £1 + a/_'---_---Tsin E £2 ].

(_xlsa) = [cos E - e - a sin E(_EISM)(SMI3a)]t 1

+ [_ sin E + ad_-_T cos E(_E/_M)(SM/8a)]£ 2

(8xlSe) = -a[l + sin E(SEISe)]£ 1

+ a[V_--_-T eos E(_EI_e) - e sin EIw_--_-_/]£ 2
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(_xl_i) = a[(cos E - e)(atll_i) + _--_-'/sin E(_21_i)]

(_x/_fl) = a[(cos m - e)(8£i/_) + _--'_-T sln E(_£2/_i)]

(_xl_) = a[Ccos E - e)C_ll_w) + _ sin E(_£21_)]

(_xl_tp) = (_xI_M)(_MI_t) = (_xI_E)(_EI_M)(_MI_t)P P

= a[-sin E £i + /_'-'-'_ cos E £2] (_E/_M)(_M/_tp)

Y = a[(cos E - e)m I + a/l---'_-T s±n E m 2]

(_y/_a) = [cos E - e - a sin E(_E/_M)(_M/_a)]m 1

+ [_--_-'/ sin E + a_---'_e-T cos E(_E/_M)(_M/_a)]m 2

(_y/_e) = -a[sin E(_E/_e) + l]m 1

+a[_---_--Z COS E(_E/3e) - e sin E//_--_'/]m 2

(_y/3i) = a[(cos E - e)(_ml/_i) + _sin E(_m2/_i)]

(_y/_) = a[(cos E - e)(_ml/3_) + _--_--T sin E(_m2/3_)]

(_y/_) = a[(cos E - e)(3ml/_) + _ sin E(3m2/3_)]

(_y/_t) = a[-sin E m I + _---_--Tcos E m2](_E/3M)(_M/_t )
P P

z = a[(cos E - e)n I + _----_/ sin E n2]

(_z/_a) = [cos E - e - a sin E(_E/_M)(_M/_a)]n 1

+ [v_--_-T sin E + a/[---_--Tcos E(_E/_M)(_M/_a)]n 2

(3z/3e) = -a[sin E(_E/_e) + fin 1

+ a[/i---_-Tcos E(_E/_e) - e sin E/_---_--_]n 2

(_z/3i) = a[(cos E - e)(_nl/_i) + _ sin E(3n2/_i)]

(_z/3_) = a[(cos E - e)(_nl/_fl) + /_-_e-T sin E(_n2/_fl)]

(_z/_) = a[(cos E - e)(_nl/_m) + _ sin E(_n2/_)]

(_z/3tp) = a[-sin E n I + _---_cos E n2](_E/_M)(_M/_t p)
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• sin.,1]x = (i - e cos E)

18x_ _II_ sin E £2 - sin E £i] [_ . sin E 31_ 1 _I_ll
_}" - (I- _ oos_) + (i- , _o__.)

[¢_----_ sin E £2 + cos E £i] 3E _M+ t (i - e cos E) (_-_) ('_aL)l

_3x _= - _/_'a" I e cos E £2

[_! I_-- _ oo_z)}4---------_
F

+ [/_-_--'/ sin E £2 + cos E
]Jk_e/

r4--------------7oo._._=-s_n_hi[e (_) _]}+ L (i - e cos E) sin E _E - cos

3x U/_7_ cos E - sin E

= (i - e cos E) _--[-I k _i /J

= (1 - e cos E) cos E k_-"_--/ - sin E ks.._--/j

I__._p_ [i_ sin E £2 + (COS E - e)£111__E_/_M .__x:__ _,-o_o__,_ J_._Jt,_

,fi F-_°s _m_-s_n_'m_]= t (i - e cos E)



26

 I[ sin .2-sinE.l] esinE_ --- (i-eoos E) ÷ (i- eoos,_) k_MK_ /

sin E m 2 + cos E m 1

+ (i - e cos E)

= (i- e cosE) + [/_---'_--T sin E m2 + cos E ml] _I_e)

i II÷ (1 - e cos E) e sin E _e - cos E

(_} [ C_°_-__/_7[ /V-CT_oosE
= (I- e cos E)' \_--T-I

_ _ _ cos_.
= (i - e cos E)

-sine Fi--jj

- sin E \_--/-/j

i _ _ COS E - sin

_w = (1 - e cos Ei' \_-_--/ \_ /

(____j_[_--_
sin E m2 + (COS E - e)m I][_E_ _/_ _

<__, oos)2 'J_,_1

----_/ Cos E n 2 - sin E nll
= _ (I - e cos E)

(_)'_'a) _['_I I /i--'_-T c°s E n2- sin E nll I 1 e sin E (_)I_)]= - (i - e cos E) _ + (i - e cos E)

+ [/_(i-sin E n2 + cos Enlecos E) ] (DE)._ _(_)I



= (i - e cos E)
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I 1+ _ sin E n 2 + cos E n

1 c°'En'-sinEn'Jl( Jl(i - e cos E) e sin E _el - cos E

Bz _/_/a ¢i---'-C_-mecos E - sin E

= (i + e cos E) \_--_--/ \8-_/]

= (i - e cos E)

'I;_-_p_ = - _ [_ sin E n2 + (c°s E - e)nl] '(_) 'I_=_p_<I - e cos E) z

If S = S.(a, e, i, _, m, M), the following changes must be made:
i

(_x/_a) = (cos E - e)£ I + /_--_-_/ sin E £2

(Sy/Ba) = (cos E - e)m I + _ sin E m 2

(_yl3M) = a(-sin E m I + _ cos E m2)(aEIBM)

(Sz/Ba) = (cos E - e)n 1 + _ sin E n 2
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(_z/_M) = a(-sin E nI + _ cos E n2)(_E/_M)

(____) _ I_c°s E £2 - sin £iI
= - (i - e cos E).

(3_-M) = - _ [_ sin E £2 + (c°s E -e)£1]I3E)(l- e cos E) 2

__ i cosEm2- inEml]_a / - (i - e cos E)

_M = - (I - e cos E) z _-M

= - (i - e cos E)
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APPENDIXB

LAGRANGEPLANETARYEQUATIONS

The Lagrangeplanetary equations are the following (ref. 5 or 6)

da 2 3F
D

dt na _M

de i - e 2 _F _- e 2 8F

d_-= nTi-e _M _ 8_

d__i= cos i 8F 1 _F

dt na2 _ - e2 sin i _--_- na 2_ sin i B-_

d_ i SF

dt na2_ - e 2 sin i _i

d_ cos i 8F __F

naZe _edt na 2 sin i _i +

dM 1 - e 2 _F 2 _F

dt _ _e na _a (B1)

The mean motion, n, and the disturbing function, F, are defined as

n = _ (B2)

F __.2.q.F. ({_ __3 _J2 R2 1 sin2i), (l_e2) -3/2 (B3)

If the time of periapsides passage is chosen as one of the independ-

ent variables, it is necessary to derive another equation as follows:
Define (ref. 5)

O = -nt

P

Precedingpageblank
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then

(_ = -nt - nt
P P

1 - e2 BF

na--'_reBe

2 BF

na Ba

Therefore,

n{ _ i - e2 BF 2 _F
Ba p

1 - e2 BF 2 BF (3 n _)na Ba a p

dt
.__2_ 1 - e2 _F 2 BF 3 a
dt = _ -- + -- -- + t (B4)Be na Ba _ a p

Substituting equation (B3) in equation (B4) gives, after some simplification

Integrating gives

dt wJ2R2 (i )___= 3 -3sin2i (1- e2) -3/2 (B5)
dt 2 n2a5

3 J2R2 3 sin2i) VI eitp = tpO - _-_ (t- t01 (i - _
(B6)

where t is a constant of integration equal to the time of periapsides

P0

passage at t = tO and p - a(1 - e 2)

Equation (B5) was obtained from equation 4 by setting _ = O. This
is not correct, for a is periodic of small amplitude. As a result,

equation (6) should give results which are in error, particularly for

large values of time. Thus, the choice of t as one of the independent
P

variables is not to be recommended. The use of the mean anomaly M as

the sixth independent variable is to be preferred.
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APPENDIX C

DERIVATION OF _f/_M

The derivation of the expression

is as follows: From the expression

r cos f = a(cos E - e)

(ci)

(c2)

cos f = cos E - e (C3)
1 - e cos E

since r = a(1 - e cos E). Recalling that E = E(M,e), equation (C3) can

be differentiated with respect to M as follows:

Bf -sin E (3E/BM) (cos E - e)(e sin E)(BE/3M)
-sin f _ = (i - e cos E) - (i - e cos E) 2

(ch)

But M = E - e sin E

and BE= i
_M (i - e cos E)

Substituting equation (C5) in equation (C4) gives

3f -sin E (cos E - e)(e sin E)
-sin f _ = (i - e cos E) z - (i - e cos E) 3 "

(C5)

sin E I e cos E - e 2 |(I - e cos E) z i + (i - e cos ES

sin E [sin f (i - e cos E) _2

a sin E (i - e 2)

r sin f (i - e cos E) z

i - e cos E + e cos E - e21

(i - e cos E) I

(c6)

But

r sin f = a/[--_ sin E (C7)

Precedingpageblank



36

Substlt_ing equation (C7) in equation (C6) gives

Bf

_M (i - e cos E) z

(C8)

as r = a(l - e cos E)
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APPENDIX D

COMPUTATION OF PARTIAL DERIVATIVES OF THE ORBITAL EL_ENTS

AT TIME t WITH RESPECT TO THE ORBITAL _T,_ENTS AT THE INITIAL TIME

The partial derivatives of the orbital elements at time t with

respect to the orbital elements at the initial time t are as follows:
o

(Bal_aO) = 1

(aalae O) = 0

(aa/ai O) : 0

(aa/a%) : 0

(Sa/_m0) : 0

(_alaM0) : 0

(_a/atp0) = 0

(_e/_aO) = 0

(Se/_eo) = 1

(ae/_i O) = 0

(aela%) = o

(ae/aw O) : o

(_e/aM O) = 0

(_e/atpo) = 0

(ailaa o) = o

(_i/ae o) = 0

(ai/ai O) = i

Precedingpageblank
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Define

(_il_ o) = o

(_il_ O) = 0

(8i18M O) = 0

PO

where

a_ I 3 J2 R2_"" nor-- _ 1 + _. (J-- _,in_i)

no --

3 J2R2

- 3 sin2i)

then

a_no _ + _...._..m
_a0 = 8a0 %a0 no

n
3 0

2 a0 3J2R2 (i - sinZt_(

_e0 -- (i -

a_

J2R2 )I-__ _ sin_2i°

e2)3/2
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Fuyther, since p - a(l - e2)

(_p/_ao) = i- e2

(Sp/Se0), ---2ae

(_pl_io) = o

Since

J2 R2

= £0 - 3 P-_ _ (cos i)(t - t o )

_ -7 (cos i) _%l\l=n_ - (t - t )= - _ao _ _a0/1 0

Seo 2 _ (cos i) _e0.... \_e0]

= _ --7 _ sin i 0 - cos i0 _?_ (t - t o )

(_/_o) = 1

(a_/a_ o) = o

(_/_M o) = o

(_/at ) = o
PO

3 J2R2_'(2 _ { sln2io) (t _ to )
_ =_0+ 2 _Z--

_(_--_0) 5 J2R2(= --2 p-_ 2 - _2 sin i0) l BnBT_U- 2_np (_P)] (t%0)8a0 -
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[( ]= _ p-_ - _ sin2i 0 - _ n sin(2i O) (t - t o

(_/_o) = o

(_/_o) = 1

(a_/aMo) = o

(a_/at ) = o
po

M = M 0 + £i (t - t O )

_T%/ (t - to)

_k_eo / = (t - t o )

_ t 0 >

(_M/_ o) = o

(_I,i/_ o) = o

(aM/aMo) = i

p po - _ - _ _i_2i - e02 (t - to)

_tp_ : _ (t - to)_oI V_'o/

3J2R 2

p3 (i " 3 sin2ic) (i - e02) '/2
(t - t O



_3

to,_eo / = _ eo

J2R2eo (i sin2iol _-_ (t tol
p2 _'1 _ e02

,t_to,Viol

j2R 2

= h_ p--,/-sin(2i O) /1 - eoZ (t - t o )

(atp/3_O) = 0

(Stp/3_O) = 0

(Stp/StpO)= 1
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